Selecting a Minimax Estimator of a Multivariate Normal Mean
نویسندگان
چکیده
منابع مشابه
Improved minimax estimation of a multivariate normal mean under heteroscedasticity
Consider the problem of estimating a multivariate normal mean with a known variance matrix, which is not necessarily proportional to the identity matrix. The coordinates are shrunk directly in proportion to their variances in Efron and Morris’ (J. Amer. Statist. Assoc. 68 (1973) 117–130) empirical Bayes approach, whereas inversely in proportion to their variances in Berger’s (Ann. Statist. 4 (1...
متن کاملMinimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....
متن کاملOn minimax estimation of a sparse normal mean vector
Mallows has conjectured that among distributions which are Gaussian but for occasional contamination by additive noise, the one having least Fisher information has (two-sided) geometric contamination. A very similar problem arises in estimation of a non-negative vector parameter in Gaussian white noise when it is known also that most, i.e. (1 − ǫ), components are zero. We provide a partial asym...
متن کاملEnsemble Minimax Estimation for Multivariate Normal Means
This article discusses estimation of a heteroscedastic multivariate normal mean in terms of the ensemble risk. We first derive the ensemble minimaxity properties of various estimators that shrink towards zero. We then generalize our results to the case where the variances are given as a common unknown but estimable chi-squared random variable scaled by different known factors. We further provid...
متن کاملA Multivariate Hill Estimator
We propose a simple and semi-parametric estimator for the tail index of a regular varying elliptical random vector. Since, for univariate random variables, our estimator boils down to the Hill estimator and it inherits the simplicity and asymptotic properties, we name it after Bruce M. Hill. The estimator is based on the distance between an elliptical probability contour and the outer – or exce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1982
ISSN: 0090-5364
DOI: 10.1214/aos/1176345691